NOTE

Adopting Solutions to Orphan Drug Shortages

Helen Liu*

Orphan drugs treat rare diseases affecting less than 200,000 people in the United States. The manufacturing process for orphan drugs is generally complex and time-consuming, making them susceptible to manufacturing quality issues and shortages. Drug shortages of any kind are detrimental to patient health and safety. But orphan drug shortages are especially concerning because orphan drugs treat rare diseases with no other alternative treatments, and one drug maker typically produces the entire supply. The market exclusivity that an orphan drug maker experiences also compounds orphan drug shortages by preventing competitive products in the market. Therefore, when orphan drug shortages occur due to manufacturing interruptions or discontinuances, patients may be left without an available treatment. Recently, courts have held that drug manufacturers do not have a duty to keep manufacturing drugs and supply them to the market. Therefore, patients do not have tort remedies available when there is a disruption in drug supply.

Unfortunately, there is not a silver bullet to solve orphan drug shortages, but there are various solutions to mitigate them. This Note focuses specifically on Congress and the FDA, and how both institutions should not only aim to prevent orphan drug shortages, but find alternative, compensatory solutions for patients harmed by these shortages. This Note

* Copyright © 2015 Helen Liu. Senior Articles Editor, UC Davis Law Review; J.D., UC Davis School of Law, 2015; M.B.S. Master of Bioscience, Keck Graduate Institute of Applied Life Sciences, 2007; B.A. Molecular and Cell Biology, UC Berkeley, 2005. My gratitude to Chris Gorman for his guidance and feedback throughout the writing process. Thanks to Brandon Une and Tiffany Gilliam for their most excellent comments. Thanks also to Eryn Hong, Andrew Alfonso, and the other members of the UC Davis Law Review for their hard work and dedication in bringing this piece to publication. Above all, thanks to my husband, Vincent Eng, for his unconditional love and support.

2077
will explain orphan drug shortages, government efforts to resolve them, discuss Genzyme’s recent orphan drug shortage as an example of why there needs to be action, and the negative consequences of failing to act. This Note will then propose various solutions that provide a two-pronged approach of both preventive and compensatory solutions that best serve patients harmed by orphan drug shortages. One such preventative measure is that the FDA should require orphan drug makers to include back-up manufacturing requirements as a part of their New Drug Application or Biological License Application filings. Another solution is for the FDA to consider the establishment of a stockpile repository for orphan drugs. Congress should also pass legislation to allow the FDA to establish a compensation fund that would provide monetary relief to patients harmed by orphan drug shortages. Ultimately, there needs to be more action by Congress and the FDA so that patients in need of orphan drugs or harmed by orphan drug shortages will no longer feel betrayed and “orphaned” by drug companies and the government.

TABLE OF CONTENTS
INTRODUCTION .. 2079
I. ORPHAN DRUG SHORTAGES AND GOVERNMENT EFFORTS........ 2081
 A. Orphan Drug Vulnerability to Shortages and Drug Shortage Effects ... 2081
 B. Government Efforts to Address Drug Shortages 2087
 C. Case Study: Genzyme’s Orphan Drug Shortage.............. 2091
II. PROBLEMS AND ISSUES RELATING TO ORPHAN DRUG SHORTAGES ... 2093
 A. The Shortage of Efforts to Mitigate Drug Shortages 2093
 B. The Consequences of Inadequate Efforts to Mitigate Drug Shortages ... 2095
III. SOLUTIONS TO MITIGATE ORPHAN DRUG SHORTAGES 2099
 A. Redundant and Back-up Manufacturing 2099
 B. A Stockpile Repository ... 2101
 C. Compensation Fund ... 2103
CONCLUSION .. 2106
INTRODUCTION

Drug shortages are increasing in the United States. Not only do shortages increase healthcare costs, they pose serious threats to public health. Orphan drug shortages are especially concerning since orphan drugs treat rare diseases affecting less than 200,000 people in the United States. Orphan drugs treat rare diseases with no, or very few, alternative treatments, and one drug maker typically produces the drug’s entire supply. The market exclusivity that an orphan drug maker experiences also compounds orphan drug shortages by preventing competitive products in the market. Unfortunately, when orphan drug shortages occur due to manufacturing interruptions or discontinuances, patients may be left without an available treatment.

Genzyme is an example of a biotech company that manufactures life-saving medications for rare genetic diseases. When Genzyme shut
down its factories due to manufacturing quality issues, patients relying on the company’s orphan drugs suffered serious health consequences and even death. For example, when Jeannine Lipez could not obtain Fabrazyme, Genzyme’s drug for Fabry disease, she suffered leg spasms when walking. Her health deteriorated to a point where she will likely need surgery to replace an artery. In a separate, more tragic incident, Dr. William Schubert and his wife did everything they could to replace Fabrazyme. But, by the time they did, it was too late and Dr. Schubert died.

The federal government must act to minimize patient endangerment caused by orphan drug shortages. Action by both Congress and the Food and Drug Administration (“FDA”) is particularly important because the judiciary may be the wrong avenue to handle orphan drug shortages. Recently, courts have held that drug manufacturers do not have a duty to keep manufacturing orphan drugs and supply them to the market. Therefore, patients do not have tort remedies available when there is a disruption in orphan drugs’ supply. Since Congress statutorily prevents orphan drug competition through a seven-year exclusivity period, both Congress and the FDA should employ additional efforts to prevent orphan drug shortages.

9 See id.
10 See id.
13 See Sharona Hoffman, The Drugs Stop Here: A Public Health Framework to Address the Drug Shortage Crisis, 67 Food & Drug L.J. 1, 14-16 (2012); Kevin Born, Comment, Time and Money: An Analysis of the Legislative Efforts to Address the Prescription Drug Shortage Crisis in America, 33 J. Legal Med. 235, 237 (2012).
15 See, e.g., Schubert, 2013 U.S. Dist. LEXIS 126291, at *19 (declining to impose/recognize a duty to supply orphan drugs to market); cf. Lacognata, 2012 U.S. Dist. LEXIS 102708, at *9 (declining to impose/recognize a duty to supply drugs to market).
17 See FDA’S APPROACH, supra note 1, at 31; The Market for Orphan Drugs, supra note 3; Deborah Weinstein, Orphan Drugs: Small Is the New Big, MED. MARKETING &
Unfortunately, there is not a silver bullet to solve orphan drug shortages, but there are various solutions to mitigate them. These solutions include congressional, judicial, or administrative (e.g., FDA) action. This Note focuses specifically on Congress and the FDA to argue that they should provide the necessary solutions to reduce orphan drug shortages and compensate patients. Part I will explain orphan drug shortages, government efforts to resolve them, as well as use Genzyme’s recent orphan drug shortage as an example of why there needs to be action. Part II will describe additional negative consequences of failing to act. Part III will propose solutions that may prevent or alleviate drug shortages when they occur and assist patients who are affected by orphan drug shortages.

I. Orphan Drug Shortages and Government Efforts

A. Orphan Drug Vulnerability to Shortages and Drug Shortage Effects

Prescription drug use is prevalent within the United States. Seven out of ten Americans take at least one prescription drug at any one time. More than half take at least two prescriptions. In 2012, the U.S. and worldwide prescription drug market were valued at $325.7 billion and $950 billion, respectively. In comparison, the orphan...
drug market was $83 billion worldwide in 2012,25 nearly 9% of the worldwide prescription drug market.26

With such a prevalence of prescription drug use, drug shortages can have serious consequences. Although drug shortages within the larger prescription drug market do occur, they are rare.27 While the number of drug shortages in the United States any given year is small,28 drug shortages have been increasing.29 From 2005 to 2010, the number of drug shortages tripled from 61 to 178.30

With increasing prescription drug usage and drug shortages,31 healthcare costs are also rising.32 Drug shortages may cost hospitals over $416 million a year.33 When drug shortages affect patients, they tend to visit the hospital more often as their health deteriorates.34 Hospitals may find the shorted drug to be substantially marked-up.35 Hospitals may also need to purchase more expensive, alternative therapies.36 These all result in increased costs to the hospital.37

Drug shortages also pose a serious threat to public health and patient safety.38 When there is a shortage of drugs, health care providers resort to rationing drugs, delaying treatments, and cancelling procedures.39 Even with drug substitutes, patients can still experience poor treatment.

26 See Herper, Why Big Pharma, supra note 24; Worldwide Orphan Drug Market, supra note 25.

29 See id.; Hamburg, Letter to Industry, supra note 1.

30 See sources cited supra note 29.

31 See sources cited supra note 29 (noting drug shortages); see also Nearly 7 in 10, supra note 21 (noting increasing prescription drug usage).

32 See Friske, supra note 2, at 527.

33 See id.

34 Cf. Hoffman, supra note 13, at 8-9 (implying how affected patients may experience potential side effects to alternative products or the unavailability of medications, and thereby increasing hospital costs due to increased visits); Friske, supra note 2, at 525-26 (same).

35 See Friske, supra note 2, at 527.

36 See id.

37 See id.

38 See Exec. Order No. 13,588, 3 C.F.R. 281 (2012); Hoffman, supra note 13, at 8; Born, supra note 13, at 237.

39 See Hoffman, supra note 13, at 8.
outcomes, medical errors, or both.40 When there are no substitutes, patients suffer detrimental results, including death.41

Although the orphan drug market is small when compared with the overall prescription drug market, orphan drugs play a huge role in treating rare diseases.42 In the United States, the definition of a rare disease is a disease affecting less than 200,000 people.43 An estimated 25 million people in the United States live with one of the 7,000 rare diseases affecting the world population.44 Only 250 of these rare diseases have approved treatments.45

The recent Ebola outbreak is an example of how important it is to develop drugs for rare diseases.46 Ebola is a rare disease that occurs more commonly in developing countries, but has recently affected the United States.47 With very few companies developing Ebola-related drugs, Ebola patients did not have access to life-saving Ebola drugs.48 Mapp Biopharmaceuticals, one of the few companies developing an Ebola treatment, had limited supplies of its drug, ZMapp.49 Mapp exhausted its supplies after providing experimental doses to a handful of medical workers who contracted Ebola, including the first two Ebola patients flown from West Africa back to the United States for treatment.50 There

40 See id.

41 See id.

42 See Herper, Why Big Pharma, supra note 24; The Market for Orphan Drugs, supra note 3; Worldwide Orphan Drug Market, supra note 25.

43 The Market for Orphan Drugs, supra note 3.

45 See The Market for Orphan Drugs, supra note 3.

47 See Thompson, supra note 46. As noted before, a rare disease in the United States is one that affects less than 200,000 people. See The Market for Orphan Drugs, supra note 3.

48 See Millman, supra note 46; Swanberg, supra note 46.

were just not enough drug makers in the Ebola rare disease space to develop these orphan drugs, so when the sudden need arose for these treatments, the medical community was caught off guard.

But even if orphan drugs are available to treat rare diseases, they are still prone to shortages due to manufacturing difficulties and the drug class in which most fall.\(^\text{51}\) A majority of orphan drugs are biologics — drugs that are produced from living cells.\(^\text{52}\) And like sterile injectables, almost all biologics are administered through the same route of administration.\(^\text{53}\) Due to this shared delivery mechanism, biologics are susceptible to the same manufacturing quality issues facing sterile injectables.\(^\text{54}\) As a result, many orphan drugs fall within a drug class historically most prone to shortages.\(^\text{55}\)\n

\(^\text{53}\) See Mica et al., supra note 52 (noting how “almost all biologics are administered parenterally from a sterile dosage form” as are sterile injectables); Dolinar, supra note 4 (noting that from 2010–2011, sterile injectables accounted for 80% of drug shortages); ASBM Press Release, supra note 51 (explaining how sterile injectables share a delivery mechanism with biologics).

\(^\text{54}\) See FDA’S APPROACH, supra note 1, at 13, 21 (explaining that biological drug shortages are commonly caused by manufacturing problems); HANINGER ET AL., supra note 27, at 13 (noting that 54% of sterile injectable drug shortages are linked to manufacturing quality problems); Maron, supra note 4; (explaining how biological drug shortages most frequently arise from poor manufacturing quality control); see, e.g., Katie Thomas, Lapses at Big Drug Factories Add to Shortages and Danger, N.Y. TIMES (Oct. 17, 2012), http://www.nytimes.com/2012/10/18/business/drug-makers-stalled-in-a-cycle-of-quality-lapses-and-shortages.html [hereinafter Lapses] (providing an example of how six of the major sterile injectable drug manufacturers have been warned about serious manufacturing violations within the past three years).

\(^\text{55}\) See Dolinar, supra note 4. Other sterile injectable drugs affected by shortages include vaccines, cancer medications, antibiotics, surgical anesthetics, emergency medicines, and electrolytes for intravenous feeding. See HANINGER ET AL., supra note
Especially for orphan drug shortages, there is a two-fold concern of manufacturing issues and sole-sourced manufacturers. In terms of the manufacturing process for biologics, “the product is the process.” Since living microorganisms are used to produce many orphan drugs, the manufacturing process is complex and time-consuming. Consequently, there is a higher risk of encountering problems since manufacturers need to ensure that the manufacturing process remains the same every single time a drug is made. Even the smallest change in the manufacturing process can affect the finished product. Since orphan drug production is commonly concentrated among a small number of manufacturers or is sole-sourced, this market concentration exaggerates manufacturing problems. With manufacturing concentrated among one or a few players, there are no alternative manufacturers to assist with drug supply disruptions. Thus, orphan drugs are uniquely vulnerable to shortages.

Congressional efforts to incentivize drug makers also compound orphan drug shortage problems. Before Congress passed favorable laws encouraging orphan drug development for rare diseases, drug companies had been reluctant to invest in research and development...
for orphan drugs because these drugs were not profitable.66 Drug companies take about ten to fifteen years, and on average $1 billion, to shuttle a drug through research and development, human clinical trials, and eventually to market upon FDA approval.67 To help drug companies recoup their costs, Congress passed the Orphan Drug Act in 1983.68 The law gives drug companies federal funding for grants and contracts to perform clinical trials of orphan drug products.69 Orphan drug companies also receive a 50% tax credit for clinical testing costs.70 The biggest incentive that orphan drug companies receive is a seven-year market exclusivity period for any orphan drug produced.71

However, with Congressional incentives come side effects.72 Market exclusivity effectively stops competitors from selling drugs in that specific rare disease space.73 For seven years, orphan drug makers do...
Adopting Solutions to Orphan Drug Shortages

not have to worry about competitors vying for their market share.\(^74\) Exclusivity provides orphan drug companies an easier time recouping the development costs of high-valued drugs for such small patient markets.\(^75\) However, without competitive products, patients of a specific rare disease have only one treatment option for their rare conditions.\(^76\) The concentration of orphan drug production among a small number of manufacturers compounds the problem.\(^77\) The drug development incentives that Congress offered to orphan drug companies may eventually backfire when the combination of market exclusivity and drug shortages occur. Therefore, if an orphan drug maker enjoys market exclusivity but experiences a drug shortage, patients are left without an available treatment.\(^78\)

B. Government Efforts to Address Drug Shortages

Congress has made various efforts to address drug shortages by mandating that drug makers provide advance notice of drug discontinuances or interruptions.\(^79\) In 1938, Congress passed the Federal Food, Drug, and Cosmetic Act (“FD&C Act”).\(^80\) The FD&C Act formed the FDA and gave it the authority to regulate food, drugs, medical devices, and cosmetic safety.\(^81\) But, the FD&C Act mandates

\(^74\) See id.

\(^75\) See id.

\(^76\) See FDA’S APPROACH, supra note 1, at 31; Fox, supra note 6, at 29; Weinstein, supra note 17.

\(^77\) See FDA’S APPROACH, supra note 1, at 31.

\(^78\) See Fox, supra note 6, at 29; cf. THE PEW CHARITABLE TRUSTS, supra note 5 (explaining the adverse effects of an exclusivity incentive that leads to reduced competition and indirect consequences of having no backup options to sole produced drugs). I want to be clear that I am not proposing that Congress ends orphan drug incentives and cause drug makers to develop no treatments at all. I am merely pointing out some weaknesses in the current incentivized system that contribute to or compound orphan drug shortages. Proposed changes to the Orphan Drug Act is beyond the scope of my Note.

that only sole-source and medically necessary drug manufacturers are required to provide six months advance notice of drug discontinuances or interruptions to the FDA.82 In 2011, Congress introduced the Preserving Access to Life-Saving Medications Act ("PALSM Act").83 The PALSM Act allows the FDA to distribute information about shortages, prioritize inspections, identify vulnerable drugs, and collaborate with manufacturers to address shortages.84 The PALSM Act also requires all drug manufacturers (regardless of the sole-source or medically necessary designation) to provide six months’ notice to the FDA before discontinuing or interrupting drug production.85 But, Congress has not yet enacted the PALSM Act.86 Instead, Congress passed the Food and Drug Administration Safety and Innovation Act ("FDASIA") in 2012.87 Unlike the proposed PALSM Act, the FDASIA requires only that the medically necessary drug manufacturers, sole-source or not, provide six months advance notice if they anticipate discontinuances or interruptions.88 But if the PALSM Act had passed, the FDA would then receive adequate, advance manufacturer notice to intervene more strategically, find alternative suppliers, and better inform clinicians of potential future drug shortages.89 Instead, congressional efforts have not significantly mitigated or reduced drug shortages.90

Currently, the FDA has some options to mitigate the effects of a confirmed drug shortage,91 but they are not enough.92 The FDA can notify and encourage manufacturers of same or similar products to increase production.93 The FDA can expedite review of new

82 See 21 C.F.R. § 314.81(b)(3)(iii)(2)(d); FDA’s APPROACH, supra note 1, at 18 (defining “medically necessary” as any drug product used to treat or prevent a serious disease or medical condition for which there is no other adequately available drug product that is judged by medical staff to be an appropriate substitute).

83 H.R. 2245; Hoffman, supra note 13, at 14.

84 See H.R. 2245 § 2(a).

85 See id.; Born, supra note 13, at 244.

86 See Hoffman, supra note 13, at 15.

89 See Hoffman, supra note 13, at 15.

90 See Hoffman, supra note 13, at 14-16; Born, supra note 13, at 236, 244-46.

91 See FDA’s APPROACH, supra note 1, at 16; Born, supra note 13, at 242-43; Hamburg, Letter to Industry, supra note 1.

92 See Hoffman, supra note 13, at 11; Born, supra note 13, at 247.

93 See 21 C.F.R. § 1303.13 (2014); FDA’s APPROACH, supra note 1, at 4, 16; Born, supra note 13, at 242-43.
manufacturing lines or raw material sources to assist companies with production increases.94 The FDA can find another manufacturer to begin producing the product.95 The FDA can also exercise its regulatory discretion to grant a “compassionate use exception” for experimental drugs or the controlled importation of equivalent products approved outside of the United States.96 The FDA may also take action against a drug maker — in the form of a consent decree — that is facing a drug shortage caused by manufacturing quality issues.97 A consent decree is a judicial order recognizing the legal agreement between the FDA and a drug maker.98 Under a consent decree, a drug maker allows a third-party to inspect and review its factory operations for a certain time.99 The third-party will certify the drug maker’s compliance with FDA regulations.100 As a result of the regulatory action, the FDA may fine drug companies for their manufacturing quality problems.101 The FDA may also require companies to pay specified amounts of past and future profits from products made at their troubled factories.102 Federal fines can be costly.103 For example, Wyeth Pharmaceuticals violated manufacturing protocols while producing a flu vaccine in 2000.104 Wyeth paid \$297 million in fines, plus 18.5\% of its flu vaccine sales.105 In 2002, Schering-Plough, now owned by Merck, paid \$500 million to the FDA for drug manufacturing violations produced at four factories.106 In

94 See 21 C.F.R. § 314.70 (2014); FDA’s APPROACH, supra note 1, at 4, 16; Born, supra note 13, at 242-43.
95 See supra note 94.
96 See 21 C.F.R. §§ 312.305-310 (2014); FDA’s APPROACH, supra note 1, at 4, 16; Born, supra note 13, at 242-43.
100 See Pollack, Genzyme Says FDA, supra note 97.
101 See id.
102 See id.
103 See id.; Staton, Genzyme Submits, supra note 99.
105 Id.
106 Pollack, Genzyme Says FDA, supra note 97.
2010, Genzyme paid the FDA a $175 million fine for a virus contamination in its key Boston plant.107

Specifically for orphan drug shortages, the FDA has specialized options under federal laws.108 If the FDA believes an orphan drug maker cannot produce enough drugs to meet patient need, the Director offers the company one of two options.109 First, the drug maker may provide information on how the company can produce sufficient orphan drug quantities within a reasonable time.110 Second, the drug maker may agree to allow the FDA to approve competitor drugs before the company’s market exclusivity expires.111 If the orphan drug company fails to fulfill either option, then the Director will withdraw the drug’s exclusive approval.112 The FDA cannot reinstate a drug’s market exclusivity after a company loses it.113

Recently, FDA efforts to mitigate drug shortages have produced some positive results.114 In October 2011, FDA Commissioner Margaret Hamburg issued a letter to all drug manufacturers to bring attention to the rising incidence of drug shortages. Commissioner Hamburg expressed concern over the shortages, especially those involving drugs without alternative therapies.115 She asked drug manufacturers to work with the FDA and notify the agency of potential disruptions.116 After six months, Commissioner Hamburg reported that her letter made the industry aware of the increases in drug shortages.117 The letter resulted in a six-fold increase of early manufacturer notifications.118 The FDA prevented 128 drug shortages during the six-month timeframe.119 A fewer number of shortages have

\begin{footnotes}
\item[107] Staton, \textit{Genzyme Submits, supra} note 99.
\item[109] See id. § 316.36(a).
\item[110] See id. § 316.36(a)(1).
\item[111] See id. § 316.36(a)(2).
\item[112] See id. § 316.36(b).
\item[113] See id.
\item[116] See id.
\item[117] See Hamburg, \textit{Six Month Check-up, supra} note 114.
\item[118] Id.
\item[119] Id.
\end{footnotes}
occurred since then, with 117 drug shortages in 2012 and 44 shortages in 2013.120

The White House has also recognized the seriousness of drug shortages.121 In October 2011, President Obama signed an Executive Order to address the recent increases in drug shortages.122 The order increased the FDA’s jurisdiction in preventing and reducing drug shortages of life-saving drugs.123 President Obama granted the FDA broader reporting of discontinuances, expedited regulatory review, and the ability to report drug profiteering activities to the Department of Justice.124

C. Case Study: Genzyme’s Orphan Drug Shortage

Genzyme’s recent manufacturing woes provide an excellent case study of an orphan drug shortage and its effect on patient lives.125 In June 2009, Genzyme shut down its main Boston manufacturing plant when a virus contaminated two of its drug products.126 The affected drugs were Cerezyme, for Gaucher disease, and Fabrazyme, for Fabry disease.127

Genzyme’s drugs treat very rare genetic diseases.128 Gaucher and Fabry disease are both rare inherited enzyme deficiencies that allow fatty substances to build up in the body.129 Untreated, the build-up causes organ damage.130 Both Cerezyme and Fabrazyme provide the missing enzyme for their respective diseases.131 In the United States,

122 Id.
123 See id.
124 See id.
125 See generally Schubert v. Genzyme Corp., No. 2:12CV587DAK, 2013 U.S. Dist. LEXIS 126291 (D. Utah Sept. 4, 2013) (illustrating how Genzyme’s drug shortage allegedly killed a patient who relied on the company’s drug); Pollack, Genzyme Drug Users Betrayed, supra note 2 (illustrating Genzyme’s manufacturing troubles and the effects and consequences it has on patients who depend on Genzyme’s orphan drugs to survive); Pollack, Genzyme Says FDA, supra note 97 (explaining Genzyme’s manufacturing quality problems and the regulatory actions the FDA took as a result).
126 See Pollack, Genzyme Drug Users Betrayed, supra note 2.
127 See id.
128 See id.
129 See id.
130 See id.
131 See id.
there are only 1,500 Cerezyme users and fewer than 1,000 Fabrazyme users.132

Genzyme’s drug shortage lasted much longer than anticipated.133 Initially, Genzyme predicted that the shortages would last six to eight weeks.134 But, Genzyme encountered additional manufacturing problems when it found steel, rubber, and fibers in its drug vials.135 Consequently, what began as a temporary drug shortage lasted about a year.136

Genzyme’s drug shortage had severe consequences.137 Genzyme rationed drugs and gave them to patients with the most severe cases.138 Genzyme also began decreasing drug doses.139 Worse yet, 80\% of patients received no drugs for several months.140 Patients experienced increased pain and fatigue.141 Even though serious medical results have been rare, devastating consequences, such as death, have occurred.142 Dr. William Schubert, a Genzyme patient, allegedly died because of the Fabrazyme shortage.143 After Genzyme rationed Dr. Schubert’s Fabrazyme doses, his health deteriorated quickly.144

At the time, there was a Canadian bioequivalent drug available to treat Fabry disease.145 Under a “compassionate use exception,” the FDA allowed patients to receive the Canadian drug for free.146 The Canadian drug does not have market approval in the United States,
but the FDA allowed the importation of the drug into the country.147 Sadly, Dr. Schubert did not hear about the Canadian drug until December 2009, and he was only able to obtain it two months later.148 When Dr. Schubert finally received the drug, it was too late.149 He died soon afterwards.150 After Dr. Schubert’s death, Mrs. Schubert sued Genzyme for negligence.151 She argued that Genzyme owed Dr. Schubert a duty of reasonable care to ensure a continued supply of Fabrazyme.152 The trial court disagreed and found that Genzyme’s failure to supply enough drugs was an act of omission.153 The conduct was nonfeasance, not malfeasance.154 The court also discussed how public policy forbids the court to impose a duty of care on drug manufacturers.155 If the court imposed such a duty, drug developers would be discouraged from entering the market.156 Therefore, the court granted Genzyme’s motion to dismiss on the pleadings.157

II. PROBLEMS AND ISSUES RELATING TO ORPHAN DRUG SHORTAGES

A. The Shortage of Efforts to Mitigate Drug Shortages

Congressional efforts to mitigate drug shortages have been encouraging, but there is more work to accomplish.158 Although Congress introduced the PALSM Act, it has not been able to pass the proposed legislation.159 The proposed legislation would require all drug makers to inform the FDA of drug discontinuances or interruptions six months in advance.160 Even with such a disclosure

147 Cf. FDA’s APPROACH, supra note 1, at 4 (“[The] FDA . . . exercised regulatory discretion regarding controlled importation of similar products approved abroad but not approved in the United States”).

149 See sources cited supra note 148.

150 See sources cited supra note 148.

152 See id.

153 See id. at *19.

154 See id.

155 See id. at *18.

156 See id.

157 See id. at *19-20.

158 See Hoffman, supra note 13, at 14-16; Born, supra note 13, at 237; supra Part I.B.

159 See Hoffman, supra note 13, at 14-15.

160 See H.R. 2245, 112th Cong. § 2(a)-(b) (2011); Hoffman, supra note 13, at 14;
mandate, drug makers may not always fulfill the requirement since shortages are unpredictable. The FDA is currently able to expedite review of manufacturing lines or seek manufacturers of similar products to increase production during shortages. But, these options are not effective for orphan drug shortages since there are usually no similar drug products or manufacturers in the disease space. Also, the current and proposed legislation does not address compensatory remedies for patients negatively affected by drug shortages. Congress does not have legislative reforms providing compensatory remedies on its agenda in the near future.

Judicial remedies for patients harmed by drug shortages are also not readily available. After Schubert, courts may be unwilling to extend tort liability for drug makers who discontinue or temporarily stop production of drug supplies. Schubert is the latest of two existing cases that explore the issue of a drug maker’s duty to continue drug production. Courts in these cases have sided with the drug company and rejected such a duty. These rulings illustrate how judicial tort remedies are currently unavailable for patients harmed by discontinued or interrupted drug products.
B. The Consequences of Inadequate Efforts to Mitigate Drug Shortages

Healthcare systems, patients and their families, and orphan drug companies all face serious concerns and consequences when confronted with drug shortages.171 Most of these issues are financial in nature or relate to safety concerns.172 The negative consequences can also affect drug companies’ reputations.173 But, patients are ultimately the ones who suffer the most from orphan drug shortages.174 Healthcare providers experience increased costs and have trouble treating patients with limited orphan drug supplies.175 Drug vendors and distributors engage in price gouging by charging health providers 10–1,000 times the ordinary price for drugs in shortage, thereby increasing hospital costs.176 This exploitative environment creates grey markets.177 A grey market is the trade of legally made products through unauthorized, unofficial, or unintended distribution channels.178 The same drugs sold in other countries can cost a fraction of their drug prices in the United States.179 Unauthorized distributors can import the drugs into the United States and sell them at heavily marked up prices.180 A pharmacy survey estimated that U.S. hospitals spent at least $200 million on grey market and alternative drugs.181

172 See Hoffman, supra note 13, at 9-11; Born, supra note 13, at 237-39.
173 See Pollack, Genzyme Drug Users Betrayed, supra note 2; Pollack, Precious Drugs, supra note 171.
174 E.g., Schubert, 2013 U.S. Dist. LEXIS 126291, at *4 (providing an example of a patient who died); see Born, supra note 13, at 237; Friske, supra note 2, at 525-26; Pollack, Genzyme Drug Users Betrayed, supra note 2; Pollack, Precious Drugs, supra note 171.
175 See FDA’S APPROACH, supra note 1, at 29; Hoffman, supra note 13, at 9-11; Born, supra note 13, at 239.
177 See Hoffman, supra note 13, at 9; Born, supra note 13, at 239; Stencel, supra note 176.
179 See id.
180 See Hoffman, supra note 13, at 9; Balfus, supra note 178.
181 Hoffman, supra note 13, at 10.
Even worse than grey markets, black markets can develop.\(^{182}\) Black markets differ from grey markets by providing consumers with illegal products or products that cannot be acquired through authorized channels.\(^{183}\) Like grey markets, black market vendors sell short supply drugs at exorbitant prices.\(^{184}\) Fraudulent, counterfeit, and expired drugs are also concerns in the black market.\(^{185}\) A side effect of grey and black markets is that patients may resort to stockpiling and hoarding.\(^{186}\) This can also exacerbate the severity of the drug shortage.\(^{187}\)

For patients and their families, they encounter financial and safety concerns when facing drug shortages.\(^{188}\) Drug shortages may force patients to forgo treatments, take reduced drug doses, or receive alternative drug treatments that increase adverse reaction risks and dosing errors.\(^{189}\) Patients taking reduced doses or less-effective alternative treatments may have deteriorating health.\(^{190}\) These patients may require frequent visits to the hospital, increasing healthcare costs and consuming resources.\(^{191}\) For patients who may need to take substitute, alternative treatments, insurance providers may be unwilling to pay.\(^{192}\) As a result, patients need to cover these treatments out-of-pocket.\(^{193}\) And if patients die as a consequence of ineffective treatments or drug shortages, family members are the ones left to shoulder the grief and expense of funeral costs.\(^{194}\)

But, even if orphan drugs are available and not in shortage, orphan disease patients still pay an exorbitant amount for their orphan drugs.

\(^{183}\) See Ballus, supra note 178; Fogoros, supra note 182.

\(^{184}\) See Herrick, supra note 182, at 4; Born, supra note 13, at 239.

\(^{185}\) See Herrick, supra note 182, at 4.

\(^{186}\) See id.

\(^{187}\) See id.

\(^{188}\) See Hoffman, supra note 13, at 8-11; Born, supra note 13, at 237-39; Pollack, Precious Drugs, supra note 171.

\(^{189}\) See Born, supra note 13, at 237-39; Pollack, Genzyme Drug Users Betrayed, supra note 2; Pollack, Precious Drugs, supra note 171.

\(^{190}\) See Friske, supra note 2, at 525-26.

\(^{191}\) See id.

\(^{192}\) See Hoffman, supra note 13, at 11.

\(^{193}\) See id.

Orphan drug patients typically pay $100,000 to $300,000 each year for their drugs.\footnote{See Pollack, *Genzyme Drug Users Betrayed*, supra note 2; Pollack, *Precious Drugs*, supra note 171; Max Nisen, *$300,000 a Year ‘Orphan Drugs’ Are Becoming a Hugely Profitable Business*, BUS. INSIDER (Jan. 31, 2013, 6:43 AM), http://www.businessinsider.com/the-business-of-orphan-drugs-2013-1; Aaron Smith, *From Orphan to Blockbuster?*, CNNMONEY (July 8, 2005, 2:06 PM), http://money.cnn.com/2005/07/08/news/midcaps/orphan.} Even patients with insurance pay $2,000 to $4,000 out of pocket each month.\footnote{See Pollack, *Genzyme Drug Users Betrayed*, supra note 2; Pollack, *Precious Drugs*, supra note 171.} Patients may take extreme measures to afford their drugs.\footnote{See sources cited supra note 196.} Examples of such measures are patients selling their houses, not paying bills, leaving careers for jobs with better insurance, and ruining their credit ratings.\footnote{See generally *Small Market Drugs, Big Price Tags: Are Drug Companies Exploiting People with Rare Disease?: Hearing Before the J. Econ. Comm.*, 110th Cong. (2008) [hereinafter *Hearings*] (noting how Congress’s Joint Economic Committee conducted a hearing on this exact issue of how drug companies are exploiting people with rare diseases).} The high drug prices that patients pay, and the extreme measures they take to afford them, should be unacceptable to the ethical and moral conscience of society.

The government is aware of the high, and sometimes increasing drug prices that companies are charging patients with rare diseases.\footnote{See *Hearings*, supra note 199, at 2-5 (statement of Sen. Amy Klobuchar, Member, J. Econ. Comm.).} The concern is that drug companies are exploiting patients with rare diseases.\footnote{See id. at 4-5; Perrone, supra note 73. Examples of government incentives include tax credits, R&D grants, waived FDA fees, favorable reimbursement, lower marketing costs, longer market exclusivity, and premium pricing. See *The Economics of Orphan Drugs*, supra note 68.} The government already provides incentives to orphan drug companies to develop orphan drugs and recoup their costs, but orphan drugs are still highly priced in comparison to other drugs.\footnote{See *Hearings*, supra note 199, at 5 (statement of Sen. Amy Klobuchar, Member, J. Econ. Comm.); Perrone, supra note 73.} Even after orphan drug makers enjoy the first seven years without competitors, orphan drug companies are still unlikely to encounter competitors after seven years pass (which keep orphan drug prices high),\footnote{See *Hearings*, supra note 199, at 5 (statement of Sen. Amy Klobuchar, Member, Joint Econ. Comm.). Generic biological drugs are called “biosimilars.” See *Biosimilars*, U.S. FOOD & DRUG ADMIN., http://www.fda.gov/drugs/developmentapprovalprocess/} and also unlikely to experience generic competition (that would then lower orphan drug costs).\footnote{See *Hearings*, supra note 199, at 5 (statement of Sen. Amy Klobuchar, Member, Joint Econ. Comm.). Generic biological drugs are called “biosimilars.”} However, the tide may shift...
as the FDA recently approved Novartis’s Zarxio, the first biosimilar drug in the United States. But it is still to be seen if there will be enough incentive for biosimilar drug companies to enter an orphan drug market with a small patient population and established orphan drug brand.

Since many detrimental consequences result from orphan drug shortages, orphan drug companies face intense scrutiny and bad publicity. Patients are aware that drug makers profit immensely from orphan drugs. In exchange for paying these high prices, patients expect companies to ensure that large-scale manufacturing violations would not occur and that enough drugs are available. Therefore, patients are outraged when orphan drug companies reduce drug dosages or stop providing the drugs altogether. Patients wonder about a drug maker’s sense of corporate and social responsibility. As a result, patients perceive that drug makers have been unfair and unethical.

205 See Pollack, Genzyme Drug Users Betrayed, supra note 2; Pollack, Precious Drugs, supra note 171.

206 See Pollack, Precious Drugs, supra note 171 (quoting an orphan drug user as saying “[drug makers] are essentially financially raping people” (internal quotation marks omitted)).

207 See generally id. (reporting orphan drug users’ sentiments about drug manufacturers).

208 See supra note 205.

209 See Pollack, Genzyme Drug Users Betrayed, supra note 2.

210 See Andrew Pollack, Cutting Dosage of Costly Drug Spurs a Debate, N.Y. TIMES (Mar. 16, 2008), http://www.nytimes.com/2008/03/16/business/16gaucher.html; Pollack, Genzyme Drug Users Betrayed, supra note 2; Pollack, Precious Drugs, supra note 171.
III. SOLUTIONS TO MITIGATE ORPHAN DRUG SHORTAGES

A. Redundant and Back-up Manufacturing

The FDA should require orphan drug companies to create redundant or back-up manufacturing processes and systems. Since the FDA approves every new drug in the United States, the FDA could condition orphan drug approval upon the specification of back-up manufacturing plans. At the beginning of the approval process, drug makers file either a New Drug Application (“NDA”) or a Biologic License Application (“BLA”). In these applications, drug makers need to include information about the manufacturer, the manufacturing process, and regulatory compliance. The FDA has the ability to inspect the manufacturer to review the facilities, equipment, and skills to manufacture the new drug.

Currently, drug makers favor efficiency over preparedness. Drug makers select only one or two manufacturers to produce each drug a company develops. They do so because the manufacturing process for biological orphan drugs is complex and expensive. If an orphan drug maker employs only one manufacturer, the FDA should require

213 See Hoffman, supra note 13, at 21 (alluding that drug makers currently do not indicate to the FDA whether they will create redundancy in their manufacturing plans to avoid shortages); Friske, supra note 2, at 534 (suggesting that drug makers need to improve communications with the FDA regarding “manufacturing redundancies or backup supplies”); Allen, supra note 211 (recommending that manufacturers should consider “redundant or parallel manufacturing processes” to mitigate drug supply disruptions).

216 See id.

217 See FDA’S APPROACH, supra note 1, at 30-31; Friske, supra note 2, at 534; Allen, supra note 211.

218 See FDA’S APPROACH, supra note 1, at 30-31.

219 See Allen, supra note 211.
the company to submit manufacturing information for a second, back-up manufacturer.220 With a back-up contract manufacturer organization (“CMO”), the drug company would have an alternative system in place if the first manufacturer encounters problems.221

Critics will argue that such a requirement is burdensome, time-consuming, and costly for drug makers.222 But, drug makers receive many incentives to enter the orphan drug business,223 and an additional FDA requirement should not be a deterrent.224 The advantages of entering the orphan drug space may outweigh the negatives.225 Orphan drugs are an $83 billion business and it is booming.226 Orphan drug makers receive seven-year market exclusivity on new orphan drugs.227 Drug makers also obtain direct grants and tax credits equivalent to half their drug development costs.228 These incentives make orphan drugs cheaper to develop, but companies are still able to charge high prices for them.229 Therefore, companies have been profiting from their orphan drugs.230

Critics also overstate the amount of time and money needed to employ a second CMO.231 The advantages of having a back-up

220 See id.
221 See Friske, supra note 2, at 534.
222 See Fox, supra note 6, at 29; Allen, supra note 211.
223 See Nisen, supra note 195 (discussing the enormous profitability of some companies after entering the orphan drug business); Perrone, supra note 73; Smith, supra note 195.
224 See Nisen, supra note 195; Smith, supra note 195; The Economics of Orphan Drugs, supra note 68.
225 See supra note 224.
229 See The Economics of Orphan Drugs, supra note 68; see, e.g., Pollack, Precious Drugs, supra note 171 (illustrating that Genzyme’s orphan drugs can cost more than $200,000 a year); Andrew Pollack, Questcor Finds Profits, at $28,000 a Vial, N.Y. TIMES (Dec. 29, 2012), http://www.nytimes.com/2012/12/30/business/questcor-finds-profit-for-achar-drug-at-28000-a-vial.html (illustrating a typical course of Questcor’s orphan drug treatment can cost over $100,000).
230 See Smith, supra note 195.
231 See Thomas, Lapses, supra note 54; Allen, supra note 211; Ed Miseta, 5 Characteristics to Look for in a Backup Supplier, OUTSOURCED PHARMA (Sept. 20, 2013), http://www.outsourcedpharma.com/doc/characteristics-to-look-for-in-a-backup-supplier-0001.
manufacturer outweigh not having one. Maintaining manufacturing redundancies and back-ups is expensive, but the drug maker can incur even greater costs if it encounters manufacturing disruptions without a back-up plan. The manufacturing problems can take a long time to solve, and companies can lose profits and customers during drug shortages. The manufacturing issues can be so severe that manufacturers need to spend hundreds of millions of dollars to improve their facilities. Also, once a CMO has developed a manufacturing process, a drug maker can transfer the process to a second CMO. Thus, a back-up manufacturer can protect the drug maker from drug shortages, and can ultimately benefit patients.

B. A Stockpile Repository

The FDA should also develop an orphan drug stockpile repository program. After the FDA approves an orphan drug for market, the FDA should require the orphan drug maker to manufacture excess drugs every year. Drug makers should maintain excess orphan drugs as part of a repository.

232 See Born, supra note 13, at 246-49; Jensen, supra note 120; Miseta, supra note 231.
233 See Fox, supra note 6, at 29; Miseta, supra note 231.
234 See sources cited supra note 233.
235 See, e.g., Thomas, Lapses, supra note 54 (noting how Ben Venue spent more than $300 million to upgrade its factories and build a new plant, while Hospira anticipates spending up to $375 million to address FDA concerns over its facilities).
237 See Miseta, supra note 231.
238 See Hoffman, supra note 13, at 21; Friske, supra note 2, at 534; Allen, supra note 211.
241 Cf. Hoffman, supra note 13, at 17 (noting that national stockpiles are beneficial in times of emergency). See generally Lister, supra note 239 (illustrating on example of a stockpile that an orphan drug repository may be modeled after); Revkin, supra note 239 (demonstrating the success of repositories in the agricultural context).
Stockpiling programs have succeeded in other contexts. The Strategic National Stockpile includes medical supplies and medicines that may be necessary in case of public health emergencies. When concerns over bird flu began in 2006, the government started a national stockpile of Roche’s Tamiflu. The government began pushing corporations to accumulate corporate stockpiles for their employees as a way to supplement the national stockpile. Another type of repository is located in the Arctic. The Arctic repository contains a back-up supply of seeds from different plant varieties. Although current stockpile repositories exist for different purposes, the FDA can turn to them for guidance in creating an orphan drug repository. Critics will argue that collecting and maintaining stockpiles can be costly and logistically complicated. But this argument fails because the number of orphan drugs needed to collect and manage is relatively small. Since 1983, the FDA has approved only 425 orphan drugs. Orphan drugs comprise about 12% of the global pharmaceutical market by volume, so there are fewer drugs to collect to maintain a stockpile. The FDA should work with drug companies to determine

243 See Hoffman, supra note 13, at 17.

244 See Lister, supra note 239; Staton, Roche Touts, supra note 242.

245 See Staton, Roche Touts, supra note 242.

246 See Revkin, supra note 239; Svalbard Global Seed Vault, supra note 242.

247 See sources cited supra note 246.

248 See Hoffman, supra note 13, at 17; see, e.g., Lister, supra note 239 (illustrating on example of a stockpile that an orphan drug repository may be modeled after); Revkin, supra note 239 (same).

250 See supra Part I.A; cf. Hoffman, supra note 13, at 17 (noting that this stockpile is limited to only medicines and supplies necessary for a public health emergency); Revkin, supra note 239 (noting that this stockpile is limited to only plant seed varieties); Staton, Roche Touts, supra note 242 (noting that this stockpile is limited to only Tamiflu).

251 Raeside, supra note 226.

Adopting Solutions to Orphan Drug Shortages

the excess drug amounts necessary for the stockpile so that companies can manufacture excess drugs during production of its normally scheduled drugs.253

Critics will also argue that drugs have limited shelf lives and companies need to replace them periodically.254 If drug shortages do not occur, then the drugs may go to waste.255 However, commercial drug companies have supply chain managers and processes in place to manage drug supplies.256 When the manufacturer produces a new drug batch, supply chain personnel can designate a certain amount into the repository, with the rest for consumer use.257 Supply chain managers can then monitor the repository and rotate out the drugs nearing their shelf lives.258 They can filter repository drugs into the regular supply chain, and deliver the drugs to consumers.259 Supply chain managers should be able to prevent drug waste because they can monitor, rotate out, and replace repository drugs with newly manufactured drugs.260

\textbf{C. Compensation Fund}

Congress should propose and pass legislation that would allow the FDA to establish an orphan drug compensation fund that would

253 Cf. Nordenberg, \textit{supra} note 68 (illustrating FDA efforts to mitigate drug shortages and the potential to extend its efforts to creating and maintaining an orphan drug shortage).

254 See Hoffman, \textit{supra} note 13, at 17.

255 See id.

257 Cf. Nordenberg, \textit{supra} note 68 (illustrating how a drug allocation program can properly manage demand and supply).

258 See Hoffman, \textit{supra} note 13, at 17.

259 Cf. id. (noting how drugs are wasted if drug expiration dates are not tracked and are not replaced periodically); Nordenberg, \textit{supra} note 68 (illustrating how a properly managed drug allocation program can distribute drugs to consumers who need them).

260 Cf. Nordenberg, \textit{supra} note 68 (illustrating how a properly managed drug allocation program can distribute drugs efficiently and effectively).
provide monetary relief for patients harmed by orphan drug shortages.261 Currently, patients suffering from orphan drug shortages have no remedy.262 Victims probably cannot successfully sue for negligence.263 Therefore, a solution that compensates orphan drug shortage victims would provide the monetary relief they would otherwise not receive.264 Victims have successfully utilized compensation funds in lieu of tort remedies in other situations.265 In the past, different entities have established compensation funds to compensate victims.266 When the British Petroleum (“BP”) oil spill occurred in 2010,267 the company established a compensation fund to compensate those affected by the oil spill.268 Albeit nearly ten years after the 9/11 terrorist attacks, President Obama established the September 11th Victim Compensation Fund (“Fund”).269 The Fund compensated any individual who suffered physical harm, and the families of those who were killed, because of the attacks.270 The National Childhood Vaccine Injury Act (“NCVI Act”) is a representative example of a successful compensation fund for medical issues.271 Congress enacted the NCVI Act in 1986.272 The NCVI Act

262 See supra Part I.B.
263 See supra Part II.A.
264 See supra Part II.A.
265 See sources cited supra note 261.
266 See sources cited supra note 261.
268 See Goguen, supra note 261.
269 Victim Compensation Fund, supra note 261.
270 See id.
compensated people who experienced vaccination side effects, but had little recourse for compensation from manufacturers, doctors, and the government.\footnote{National Childhood Vaccine Injury Act of 1986, Pub. L. No. 99-660, §§ 301-322, 100 Stat. 3743, 3755 (codified as amended at 42 U.S.C. §§ 300aa-1 to 300aa-34 (2012)); see National Childhood Vaccine Act, supra note 261.} The NCVI Act also created a no-fault, claim-based compensation program for vaccine-related injuries or death (“NCVI Fund”).\footnote{See Vaccine Injury Compensation Programs, supra note 271.} Additionally, the NCVI Act offered liability protections to vaccine manufacturers.\footnote{See 42 U.S.C. § 300aa-11 (2012); History of Vaccine Safety, CDC, http://www.cdc.gov/vaccinesafety/Vaccine_Monitoring/history.html (last updated Nov. 4, 2014); National Childhood Vaccine Act, supra note 261.} Therefore, the NCVI Fund became an alternative to the traditional tort system for resolving vaccine injury claims.\footnote{See Frequently Asked Questions, supra note 271.} For people suffering, or representatives of those who died, from vaccine injuries, they must first exhaust the remedies available under the NCVI Act before taking separate legal action.\footnote{National Vaccine Injury Compensation Program, supra note 271.} To date, the NCVI Fund has paid out over $2 billion to claimants.\footnote{See Vaccine Injury Compensation Programs, supra note 271.}

The FDA should establish a fund similar to the NCVI Fund.\footnote{Cf. id. (providing an example of a healthcare-related compensation fund that the FDA can use as a model for an orphan drug compensation fund).} The FDA should use the manufacturing fines that the agency collects to fund the program.\footnote{Cf. id. (providing an example of how an excise tax is imposed on each vaccine dose to fund the Vaccine Injury Compensation Fund).} Through a claim procedure, the fund would disburse monetary relief to patients who were injured and died because of orphan drug shortages.\footnote{Cf. id. (providing an example of how a claim procedure can be used for an orphan drug compensation fund).} Critics will argue that compensation funds are complicated and hard to manage.\footnote{See, e.g., Barbara Loe Fisher, Why Vaccine-Injured Kids Are Rarely Compensated, MERCOLA.COM (Dec. 13, 2008), http://articles.mercola.com/sites/articles/archive/2008/12/13/why-vaccine-injured-kids-are-rarely-compensated.aspx (arguing that the vaccine compensation program is not working as intended and should thus be repealed).} But new processes and procedures have their challenges. The FDA can use the fund to pay claim administrators to run the claim process system.\footnote{Cf. How to File a Claim, HEALTH RES. & SERVS. ADMIN., http://www.hrsa.gov/vaccinecompensation/fileclaim.html (last visited Jan. 18, 2014) (providing an example of how the Office of Special Masters within the U.S. Court of...
compensation they would otherwise not receive from the common law tort system.284 If this fund is not established, orphan drug patients will have a slim chance of compensation elsewhere.285 Ultimately, the benefits of having an orphan drug compensation fund may outweigh the disadvantages.286

CONCLUSION

Orphan drug shortages are detrimental to patient health and safety.287 Both Congress and the FDA should not only aim to prevent orphan drug shortages, but find alternative, compensatory solutions for patients harmed by these shortages.288 Therefore, a two-pronged approach of both preventive and compensatory solutions will best serve patients harmed by orphan drug shortages.289

One of the FDA’s preventative measures should require orphan drug makers to include back-up manufacturing requirements as a part of their NDA or BLA filings.290 The FDA should also establish stockpile repository requirements for orphan drugs.291 Since the traditional tort reform system does not provide monetary relief for patients injured by orphan drug shortages, Congress should pass legislation to allow the FDA to establish a compensation fund.292 FDA manufacturing fines can supply the fund.293 If these actions are taken, patients in need of orphan drugs or harmed by orphan drug shortages may no longer feel left behind and “orphaned” by drug companies and the government.

284 See supra Part I.A.
285 See supra Part II.A.
286 Cf. supra note 261 (providing examples of how without the compensation funds, victims would have had a difficult time obtaining monetary relief). There may be difficulties associated with running and managing an orphan drug shortage compensation fund, but it is hard to justify that these costs would exceed the social and monetary benefits of allowing victims to receive compensation from such a fund.
287 See supra Parts I.A, II.B.
288 See supra Part III.A–C.
289 See supra Part III.A–C.
290 See supra Part III.A.
291 See supra Part III.B.
292 See supra Part III.C.
293 See supra Part III.C.